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Stability of lifted laminar round gas-jet flame 
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The exact solution of the concentration field of jet fluid in a round laminar jet is 
presented. This analytical solution, which assumes constant kinematic viscosity and 
molecular diffusivity, establishes the dependence of the concentration field on the 
Schmidt number. This solution and a kinematic argument are used to calculate the 
shape of the lifted flame front in a round laminar jet. The observed shape of the lifted 
laminar propane flame front is compared with the prediction of this formulation. A 
spatial-stability criterion of the flame is developed and applied to examine the 
stability of the lifted flame in the flow field of the round laminar jet. The laminar 
flame blowout height and the corresponding Reynolds number are calculated from 
the stability criterion. The predictions agree well with the experimental values. The 
flame blowout Reynolds number of laminar fuel jets of pure fuels discharging from 
round pipes with fully developed laminar flow is shown to be directly proportional 
to the pipe diameter. A t  blowout the fuel concentration in the vicinity of the flame 
is found to attain a constant value which lies between the lean flammability limit 
and the fuel concentration at which the laminar flame speed is maximum. This 
stability criterion is generalized to laminar gas-jet flames of different fuels using three 
experimentally determined parameters describing their flame speed-concentration 
characteristics. The general form can account for dilution of fuel jets with inert gases. 
That flames can be lifted and blown out while they are still laminar is also 
demonstrated experimentally. 

1. Introduction 
Although i t  was first studied over thirty years ago (Scholefield & Garside 1949; 

Barr 1953), the subject of the stability of gas diffusion flames has received considerable 
attention in recent years (Peters & Williams 1983; Broadwell, Dahm & Mungal 1985; 
Eickhoff, Lenze & Leuckel 1985; Peters 1985; Takahashi, Mizomoto, Ikai & Futaki 
1985). All of these studies are concerned with turbulent flames and have dealt with 
several topics such as the liftoff mechanisms, liftoff height, jet velocities at which 
liftoff and blowout occur, and their hysteresis behaviour. An obvious first step in 
determining the mechanisms of stability of lifted turbulent jet flames is to understand 
the corresponding features in the laminar case. Little information, however, is 
available in the literature on the stability of lifted laminar gas-jet flames, presumably 
because it was thought that lifted flames could not be stabilized if the flame was 
laminar (Scholefield & Garside). Further, there are no rigorous studies to relate the 
fluid mechanics and flow pattern of the jet flames under transition conditions to the 
stability parameters. Hence, a research program on the stabilization mechanisms of 
jet flames under a wide range of conditions is currently underway in the authors' 
laboratory (Savag & Gollahalli 1985), one phase of which forms the topic of this paper. 

This paper deals with a theoretical and experimental study of the shape of the 
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reaction zone of a lifted flame of a laminar round jet and the development of a 
criterion for its spatial stability. It is a limiting case where the flame behaves like 
a premixed flame in the far field of a narrow tube and is thin in comparison to its 
radius of curvature and to  distances over which the concentration and velocity 
gradients occur. The question of the existence of the flame is separated from that of 
its stability. The governing conservation equations are first solved for the flow and 
concentration fields of a round laminar jet. This exact solution, which is analogous 
to  Squire's (1951) solution of the temperature field, displays explicitly the effect of 
the Schmidt number, which is often assumed to be unity for convenience in theoretical 
studies. Depending on the parameters of the flow configuration, there may be for the 
flame one solution, two solutions, or no solutions at  all. The existence of a real solution 
suggests that a laminar flame can be maintained in the flow field. Then the solutions 
are examined for their spatial stability. In  this analysis the question of whether the 
flame moves to its original configuration following a disturbance is examined and a 
stability criterion is proposed. A simplified form of this formal criterion is obtained 
for the stability of the flame to infinitesimal disturbances. The criterion of the 
existence of the flame in the far field is examined closely to deduce the conditions 
of the blowout of gas diffusion flames while they are entirely laminar. Experimental 
results are presented that verify the analysis developed in this article. In  particular, 
i t  is demonstrated that a gas-jet flame can be lifted, stabilized downstream, and blown 
out in a laminar-jet flow field. 

2. Flow field 
One of the few exact solutions of the equations of motion of fluid flow is that of 

the laminar flow field of a point momentum source in an unbounded quiescent fluid 
in the absence of body forces. This solution is usually attributed to Squire (1951) even 
though Landau & Liftshitz (1959) refer the solution to Landau (1944). Some steps 
of this solution are outlined below for later use in the solution of the associated 
diffusion equation (see, for example, Batchelor (1967) for more details). The flow field 
is characterized by the momentum J of the jet and the density p m  and the kinematic 
viscosity v, of the ambient fluid. Thus, the Reynolds number Re = (J/p,):/v, is the 
only parameter needed to describe the flow field uniquely. The jet is located a t  the 
origin of the reference system shown in figure 1 and aligned with the x-direction which 
is the axis of symmetry of the flow field. For convenience, both spherical polar 
coordinates, x = (R, 0, q5), and cylindrical polar coordinates, x = ( T ,  4, x), are used. 
The flow has no swirl and no dependence on the azimuthal coordinate q5. Thus, the 
velocity vector u ( x )  has two non-zero components (uR, uo) or, equivalently, (uz, ur) 
as defined in figure 1 .  The velocity vector is expressed in terms of the Stokes stream 
function $(R, 0) as 

( U R , U 0 )  = ~- 
(R2 :in* % I  R 

The equations of motion yield an explicit analytic solution for the stream function in 
the form 

sin2 0 
1 +a-cos8' 

~ I ( R , B )  = 2v, R 

The constant a is related to the momentum, and hence to the Reynolds number of 
the jet through 

+ ( 1 + a)2 In (5) 2+a + a( 1 + a ) ] .  
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x 

FIQURE 1. Definition of the coordinate systems and the components of the velocity vector. 

Note that a decreases monotonically with increasing Reynolds number. The asymp- 
totic forms of (1 c) for small and large Reynolds numbers are 

and 

Also, for example, a = 3.32 x 
vector u along the symmetry axis is 

a t  Re = 100. Further, the magnitude of the velocity 

41.1, UJX) = -. ax 

The flow field can be described completely using single contours for the velocity 
components. For instance, the axial velocity component u, = uR cos 8 - uo sin 8 can 
be described as 

on the contour passing through (R,  0 )  = (Ro, 0) and given by 

( l + a )  (1 +cos20)-2 CosO = $  R 
RO (l+a-cos8)2 
- 

Figure 2 shows the u, contours for Reynolds numbers of 10, 100, and 200. There is 
a substantial induced motion upstream of the origin at low Reynolds numbers 
(figure 2a). For later comparison with the corresponding concentration field, note 
that the limit of the contour (1 h) for 8 4 1 is 

a2 - 
R 
Ro (1+a-cosO)2’  
_ -  
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FIGURE 2. Velocity and concentration contours in round laminar jet. The concentration contours 
are drawn for hydrogen, methane, ethane, A% = 1. propane, and butane jets in air. Note that the 
expanded r scale distorts the contours, especially, around x = 0 plane. ( a )  Re = 10, ( b )  Re = 100, 
and (c) Re = 200. 
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3. Concentration field 

exactly from the solution of the diffusion equation 
The concentration field associated with the laminar round jet can be determined 

(2) 

where u(x )  is the velocity field given by ( l ) ,  D is the coefficient of binary diffusion 
into the surrounding medium of the species emanating from the origin, and C(x) is 
the molar concentration of the diffusing species. Both the kinematic viscosity and 
the molecular diffusivity are assumed to  be constants. We also assume that the 
density variations in the flow field due to C(x) are low enough so that (1) remains 
as an acceptable approximation of the velocity field u(x )  in (2). The solution of (2) 
is given by Squire in the context of the temperature field of a heated laminar round 
jet. This elegantly simple solution exploits the property that the concentration field 
can be written as C(R, 8) = g(B)/R, where g(8) is determined from (2). The solution 
with the proper boundary condition aCla8 = 0 a t  8 = 0 is 

u(x)*grad C(x) = D div grad C(x), 

b 
R( i + a- cos 8)2Sc ' C(R, e)  = (3a)  

where Sc = v,/D is the Schmidt number and b is a constant determined from the 
source strength a t  the origin. The concentration along the centreline of the jet is 

b 
C,(X) = - a2Sc ' 

and has the same x dependence as the centreline velocity u,,(x) (cf. (1 f ) ) .  If N moles 
of the species are introduced per unit time a t  the origin into the flow field, then b 
is determined from the species conservation integral 

N = ssA C(x) u(x)*dA, 

where dA is the differential vector surface element and the integration is done over 
any closed surface A around the origin. This calculation yields 

N 4sc2 - 1 b = -  
Snv, (2Sc + 1 +a)  (2 + a)-2Sc + (2Sc- 1 -a)  a-2Sc ' 

A useful limit of (3c) is for high Reynolds number 

( 2 S ~ + l ) a ~ ~ ~  for Re B 1. 
N 

Sxv, b - -  

Note that (3c) needs to be handled with some care for Sc = f. 

can be shown graphically using one contour only as 
Analogous to  the velocity field, the concentration field for a given Reynolds number 

The shape of the concentration contour is determined by the Reynolds number of 
the jet and the Schmidt number and is independent of the molar flux N .  Velocity 
and concentration contours ( 1  h)  and (3 f )  for the laminar jets are shown together in 
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figure 2. The figure shows the velocity contour u, and six concentration contours for 
Re = 10, 100, and 200 and for Sc = 1.524, 1.376, 1.0, 1.062, 0.704, and 0.204. The 
concentration contour corresponding to Sc = 1 is nearly the same as the velocity 
contour, especially at high Reynolds numbers and for 8 Q 1,  and is of only academic 
interest. The other five concentration contours are, however, drawn for Schmidt 
numbers corresponding to  diffusion of butane, propane, ethane, methane, and 
hydrogen into air. The relative positions of these contours with respect to  the velocity 
contour are important in the analysis of the flames of these gases in air as discussed 
below. Due to  their high molecular diffusivities, hydrogen and to some extent 
methane diffuse upstream beyond the jet origin. The solution of (2) within the usual 
boundary-layer approximation cannot account for this behaviour, and, therefore, due 
caution must be exercised in extending such solutions to the description of fields with 
low Schmidt numbers. It should be noted from (1  d )  and (3) that, as the Reynolds 
number approaches zero, the concentration field tends to that of the radial diffusion 
from a point source in quiescent surroundings and the concentration contours tend 
to the sphere RIR, = 1 .  

4. Lifted flame front 
We take ( 1 )  and (3) as the solutions of the velocity and concentration fields in the 

far field of a fuel jet issuing into a quiescent oxidizer, such as propane jet discharging 
from a small tube of diameter d into air. Such an approximation is restricted to  
sufficiently low Reynolds numbers so that the jet flow is laminar and to regions of 
the flow where Rld B 1 so that flow is in its asymptotic form described by ( 1 ) .  

The lifted laminar flame over a small-diameter tube burner offers an  example of 
such a flow field. In particular, the shape of the lifted flame front can be calculated 
from the velocity and concentration fields given by ( 1 )  and ( 3 ) .  On the flame surface 
F(8) the local laminar flame speed uf, defined as the speed relative to  unburnt gas 
of a plane flame front along the normal to its surface, is equal to the component of 
the local velocity vector normal to the flame surface (figure 3). Thus, we determine 
the shape of the flame front from the kinematic condition that 

W ) . n ( x )  = Uf(X), (4a) 

where n ( x )  is the unit normal vector to the flame front as indicated in figure 3. The 
unit normal vector n = (nR, n,) can be expressed in terms of the equation of the flame 
front F(B) as 

(4b) 
[ 1 ,  - d In FldB] 

[ 1 + (d In F/d8)2]: ’ 

Substitution of (4b) into (4a )  and incorporation of ( 1 )  gives the following first-order 
ordinary differential equation for the flame front F(8)  : 

n ( x )  = 

We have assumed that the presence of the flame does not change the upstream flow 
and concentration fields significantly. There arc two distinct solutions, F+(8) and 
F-(B), corresponding to the two signs of the radical in (4c).  They are discussed below 
for propane flame and F+(8) is chosen as the proper solution. The velocity components 
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X 

FIGURE 3. Flame front. Note that the normal unit vector n points into the flame. 
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FIGURE 4. Flame speed ur versus molar concentration C for propaneair mixture. -, cubic spline 
fit to data from Egerton t Thabet (1952) and Botha t Spalding (1954); ----, (10) with 
(Um,Cm,a) = (41.7 cm/s, 1.70 mole/m5, 2.41); 0,  blowout condition. 

C (mol/ma) 

uR and uo depend on R and 0 and are available from (1). The flame speed up is often 
a complicated function of numerous variables such as concentration, temperature, 
and pressure (depending on the order of the combustion reaction). For the calculation 
of the shape of the lifted flame front to compare with the flame in laboratory 
conditions (i.e. constant pressure and temperature), we assume the uf is mainly 
determined by the concentration field upstream of the flame front and neglect the 
other effects. The laminar flame velocity up is considered insensitive to pressure as 
most hydrocarbon-air combustion reactions are of second order. Neglecting the effect 
of the buoyancy through the presence of the flame is, perhaps, as serious an 
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assumption as neglecting the heat losses from the flame front to the surroundings. 
The concentration field is available from (3) as a function of R and 6. What is needed 
now is a usable relation between C and uf, namely, uf = uf(C). Such a functional 
relationship may be available either theoretically or experimentally (e.g. figure 4). 
The boundary condition of (4a) is determined from the behaviour of F(6) along the 
x-axis. No cusp is allowed on the symmetry axis, thus aF/a6 = 0 a t  6 = 0. It follows 
from (4c) that, a t  F, = F(O) ,  uf = uR. When ( 1 )  and (3) are incorporated, the boundary 
condition of (4c) is established as 

F = F o  a t 6 = 0  

such that 

This algebraic equation may be solved either analytically or numerically depending 
on the available form of u,(C). Equation (4d )  may have a single solution, two distinct 
solutions, one double solution, or no solution at all. A solution of (4) is discussed below 
in detail for a propane jet. 

5. Stability 
Once the shape of the flame front F(6) and its normal n(6) are calculated from (4), 

what remains to be done is to  establish if the solution is spatially stable. We do not 
address here the question of thermodiffusive instabilities such as those summarized 
by Sivashinsky (1983). We define a stable flame as one which tends to its original 
configuration when disturbed. In  differential terms, subsequent to the displacement 
dx of an infinitesimal element of a disturbed flame front, the new balance between 
the local flame speed uf + du, and the component of the local velocity vector normal 
to the flame surface u*n +d(u.n) decide the stability of the flame. That the differential 
increment d(u, -u.n) has a net balance toward the original flame element is sufficient 
for the flame to return to its original configuration, therefore, be stable. This 
requirement may be mathematically expressed as 

d(uf-u.n) (dx-n) 2 0, ( 5 4  

( 5 b )  

(dx.dx)[n.grad(u,-u.n)]-(dxx n).[dxxgrad(uf-u*n)] 2 0. (5c) 

which is written as 

and expanded subsequently as 

[dx*grad (uf -u*n)] (dxen) 2 0, 

In  the special case of the infinitesimal displacement of the flame normal to itself, ( 5 c )  
simplifies to 

We take this condition as the criterion of stability of a flame front to infinitesimal 
disturbances. This criterion combines together the flame shape n(x), the flow field 
u(x), and, through uf = uf(C), the concentration field C(x). Note that the left-hand 
side of (6a )  is the derivative of (uP-u*n) normal to  the flame front and into the flame; 

n-grad (u f -u*n)  2 0. @a)  

d 
dn - ( % - U ' n )  3 0. 
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The role of the concentration field may be better seen if (6a)  is expanded as 

n*[% gradC-grad (u-n) 2 0. 1 
The derivative du,/dC may bc available experimentally from data such as shown in 
figure 4. 

A simpler form of (6,) is obtained if a one-dimcnsional flame field is considered. 
Since x and n are in the same direction the gradients become ordinary derivatives 
and (6c) reduces to 

du,dC du 
dC dx dx”’ (7)  

where u is the flow velocity which points in the positive x-direction, and the flame 
is propagating in the negative x-direction. Note that, in the case of the neutrally stable 
flame front of one-dimensional premixed flame propagating normal to itself, both 
dC/dx and duldx are zero and (7)  holds with the equality sign, confirming the neutral 
stability of such a flame front. In  other words, such a propagating flame front has 
no preference in space as long as the conditions are uniform and the fuel concentration 
is within the flammability limits. The application of (7) to the lifted flame in the 
laminar round jet is presented below. 

In  the case of analysing the general stability of a flame, the displacement dx of 
the flame changes both the velocity and the concentration fields. Therefore, the 
rigorous application of the stability criterion ( 5 )  may require considerable effort. In 
particular, the changes in the flow and concentration fields may be to  such an extent 
that the flame may move to a different location which is stable t o  infinitesimal 
disturbances but not to large disturbances. The hysteresis phenomenon observed in 
the diffusion flames over burners is one such case where the flame is stable to 
infinitesimal disturbances, but can be forced to  lift off or reattach by sufficiently 
intense forcing (see, for example, Scholefield & Garside and, for a more recent 
example, Savag & Gollahalli). 

In  the case of the solution from (4) of the lifted flame front of the laminar round 
jet, i t  is sufficient to investigate the stability of the flame front along the x-axis. The 
flame is stable, when moved slightly downstream, the local flow velocity should be 
lower than the local flame velocity so that the flame can move upstream to its original 
position, and, when moved slightly upstream, the local flow velocity should be higher 
than the local flame velocity so that the flame can be lifted back to its original 
position. I n  quantitative terms, this requirement is equivalent to du,/dx 2 du,/dx 
along the x-axis. Equality holds for neutral stability. Using the chain rule of 
differentiation, this expression is written as 

du,dC du, a-. 
dC dx dx 
_ _  

This expression is derived from purely intuitive arguments and is identical to the 
one-dimensional stability criterion expressed in (7),  which is deduced from the general 
stability hypothesis (5) .  The two spatial derivatives dC/dx and du,/dx are available 
from (3) and ( i ) ,  respectively. The expression simplifies to 
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The right-hand side of this inequality is positive ; therefore any flame located on the 
rich-flammability branch of u,(C) curve is stable. Flames are stable only on the portion 
of the lean-flammability branch adjacent to the maximum flame speed, 

6. Blowout 
The existence of solutions of ( 4 d )  deserves close attention. As the Reynolds number 

increases, the unstable and the stable solutions move close to  each other. The two 
solutions coincide when the local flame velocity and the fluid velocity and their 
derivatives are equal. Now, (7 )  and (8) become equalities. Beyond this critical 
Reynolds number Rebo, ( 4 )  has no solutions for the flame front; therefore, the jet can 
no longer sustain a free flame. We define this condition as the blowout condition of 
the round laminar flame. The blowout parameters, namely the flame liftoff height 
a t  blowout xbo and the blowout Reynolds number Rebo, are determined from the 
simultaneous solutions of 

u24-4 = U,(X)? ( 9 4  

and 

These two equations can in principle be solved simultaneously to obtain the useful 
parameters Rebo and xbo. An exact analytical solution requires a usable form of the 
flame speed as a function of the concentration uf(C). Most of the available information 
is in the form of experimental data which show considerable scatter depending on 
the particular measurement technique used. The solution of (9) occurs on the lean 
branch of the ur(C) curve near the maximum flame velocity (cf. inequality (8b ) ) .  
Therefore, a parabola approximating the lean branch of the experimental data is well 
suited for the solution of the blowout conditions. The functional form of this curve 
fit is 

The two parameters Urn and Cm are the maximum flame velocity and the corresponding 
molar concentration, which are fixed values for a given fuel-oxidizer combination. 
Therefore, the only adjustable parameter of the curve fit is a, which is larger than 
unity for common fuelhxidizer pairs. For convenience, we define another parameter 
/3 = 1 - (1 - l /a)i  such that 0 < /3 < 1. Typical values of these four parameters for 
some fuels are presented in table 1. Considering the scatter in the available data, the 
error introduced in this approximation is within the uncertainty of data. 

By using (1 e ) ,  ( 3 d ) ,  and (10) the solution of the blowout condition (9) for large 
Reynolds number (Re P 1) is obtained as 

and 

where Nbo is the molar fuel flow rate at blowout. The local concentration c,, a t  xbo 
is determined from ( 3 b )  as 

Cb0 = (1 - 1/a)iCrn, (1lc) 
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which is a sole property of the laminar flame speed characteristics of the particular 
fuel-oxidizer pair and independent of any other flow or fluid properties for the 
laminar round jet. The critical parameters of the flame are, thus, determined by the 
laminar flame speed characteristics u,(C) and the two dimensionless numbers ; the 
Schmidt number and Urn Nbo/vL C,, which is a measure of the fuel flux. Note that 
the location of the maximum flame velocity Urn(C,) would be a t  x = (1 -p) xbo. The 
flame liftoff distance at blowout xbo may be expressed conveniently in terms of the 
blowout Reynolds number as 

Re:,,. 
Urnxbo - 3 1 

U, 1 6 ~  ap( 1 -p) 
These results show explicitly the dependence of the blowout parameters on the 
intrinsic properties of the particular fuel-oxidizer combination Urn, C,, a, u,, and 
Sc ;  and the fuel flow rate Nbo. For a given fuel-oxidizer pair such as propane in air, 
the blowout Reynolds number Rebo depends on the square root of the molar fuel flow 
rate and the blowout height is directly proportional to the fuel flow rate. 

The restrictive assumptions regarding the effects of the presence of the flame on 
the flow upstream of the flame front are no longer needed. At or near blowout, the 
flame is already extinct or near extinction; hence its upstream effects are no longer 
restrictions to the blowout parameters calculated in (1 1 ) .  Thus, for the laminar flame, 
the blowout has been accounted for by fluid-mechanics considerations using an 
intrinsic property of the fuel-oxidizer mixture uf(C) and without any additional 
reference to the chemical reactions in the flow field. 

7. Experiments 
7.1. General remarks 

The jet momentum J and the molar fuel flow rate N are the two parameters needed 
to uniquely construct from (1) and ( 3 )  the flow field for a given gas jet in the 
laboratory. For the solution to be strictly applicable, J should be introduced into the 
flow field with no mass flux and N with no momentum. Neither can be achieved in 
practice. An acceptable approximation in the far field is obtained if the jet emerges 
from a small orifice. I n  such an experiment, howcvcr, the two parameters J and N 
are no longer independent. In particular, if the jet fluid of density pj and volumetric 
flow rate Qj is emerging from a small tube of diameter d with a parabolic velocity 
profile, then 

and 

where pf and M ,  are the partial density and the molar mass of the fuel carried by 
the jet fluid. Thus, Qj is the only flow parameter needed to  ascertain a and b uniquely 
through ( 1  c )  and ( 3 b ) .  The blowout parameters for the flame over the tube are from 
( l l a )  and ( l l b ) ,  
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and 

Thus, the blowout conditions are related to fuel-oxidizer properties and the burner 
diameter d .  The density pf is the partial density of the fuel in the jet fluid, which is 
equal to that of the pure fuel gas if the fuel is not diluted. If the fuel is diluted with 
gases whose presence does not change the up(C) characteristics, then pf is the 
conventional partial density of fuel gas in the mixture. Note that the Reynolds 
number of the flow in the tube and that of the jet differ from each other by the factor 
(16/3n)? (pj /poo); and by the two different viscosities used. For example, a discharge 
flow rate of Q = 0.653 cm3/s of propane into air through a tube of diameter 
d = 0.353 mm produces a jet Reynolds number of Re = 200, and the constants 
a = 8.35 x lop4  and b = 8.75 x mole/cm2. An indirect way of controlling the two 
parameters J and N is to dilute the jet fluid. This method, however, is capable of 
producing only values of N lower than the maximum value determined by the 
injection of pure fuel. The highest value of N with the lowest value of J may be 
achieve if the jet is discharged from the orifice with a uniform velocity. The 
construction of such an orifice to  operate at flow rates low enough for laminar jet 
flow, however, may not be feasible owing to  the rather thick boundary layers 
developing on the inside walls. 

For a given fuel-oxidizer pair, the parameters for a laminar flame a t  blowout xbo 

and Rebo may be conveniently written as 

xbo = yd2, (14a) 

and Reba = Sd, (14b) 

where the dimensional constants y and S are defined in (13a)  and (13 b)  and are listed 
in table 1 for some pure fuel jets in air. 

It is interesting to  observe from (13a)  that  one needs to  measure only the flame 
stand-off distance at blowout xbo as a function of the tube diameter d t o  test the 
validity of the arguments presented in this paper. In  the following examples of flames, 
vertical fuel gas jets were produced in a quiet room over fine stainless-steel tubes of 
various sizes. Typical laboratory conditions were 730 torr atmospheric pressure and 
2OoC room temperature. The tubes had internal diameters of 0.208, 0.353, and 
0.432 mm. The tubes were typically a few centimetres long, ample to allow fully 
developed laminar flow a t  the Reynolds numbers investigated here. The ends were 
ground square and deburred. The flow rate was measured using a fine rotameter with 
a range of S 1 . 5  cm3/s (Gilmont, size no. 10). The direct and schlieren pictures were 
taken with a 35 mm camera. A brief description of the schlieren system may be found 
in Savag & Gollahalli. 

7.2. Propane flame 

Propane jet in air offers a readily accessible way of testing the ideas developed above. 
The flame speed uf(C) needed for the solution of ( 4 )  for the shape of the lifted flame 
front is experimentally available for propane-air mixture and is shown in figure 4 .  
The data arc taken from Egerton & Thabet (1952) and Botha & Spalding (1954). The 
fitted smooth curve is a third-order spline and is used in the numerical solution 
of ( 4 ) .  Note that there is no sustained flame beyond the flammability limits of 
propane. These limits are about C,,,, = 0.83 mole/m3 and Crich = 3.50 mole/m3 at 
typical laboratory conditions. 

The first step in the solution of the lifted flame shape is to solve ( 4 4  for the location 
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FIGURE 5. ---, Axial velocity uo and -, local flame velocity uf along the axis of the round laminar 
propane jet issuing from 0.353 mm diameter tube. (a) Lifted flame, below the critical Reynolds 
number, Re = 100. Stable solution in rich mixture. ( b )  Lifted flame, below the critical Reynolds 
number, Re = 190. Stable solution in lean mixture. ( e )  Lifted flame at the critical Reynolds number 
Reb, = 201.4. ( d )  No flame, beyond the critical Reynolds number, Re = 250. 

R, of the flame front on the axis of the jet. Four cases are shown in figure 5 for the 
0.353 mm diameter tube. Each of the figures displays the axial velocity along the 
centreline u, and the flame velocity uf corresponding to the local concentration of 
propane. 

There are two distinct solutions at sufficiently low Reynolds numbers. Either one 
(figure 5 a )  or both solutions (at higher Reynolds number) can be on the lean branch 
of the up(C) curve of figure 4 (figure 56). The appropriate choice between these two 
solutions is dictated by the stability criterion (7 )  (or, equivalently, (8a)). The larger 
of the two solutions is unstable, thus, cannot be realized in a conventional laboratory 
environment. I ts  existence may, however, be demonstrated experimentally in the 
laboratory. There is no flame if a small ignition source such as a match or a glowing 
filament is held over the fuel jet above the lean flammability limit. As the ignition 
source is lowered gradually to within the flammable-mixture region, a stable flame 
attached to the ignition source is observed. This flame moves up and disappears when 
the ignition source is moved radially away from the jet axis. If the source is moved 
further upstream below the location of the unstable solution, the flame moves and 
stabilizes a t  the axial location given by the stable solution. This behaviour is the direct 
consequence of stability arguments presented earlier, and summarized in (7) and (8a).  
Note that the stable flame position is not necessarily at the maximum possible flame 
speed for the fuel-air mixture. 

As the flow rate Qj increases, therefore, the Reynolds number is increased, both 
solutions move downstream and approach each other. Eventually, the axial velocity 
curve and the local flame velocity curve become tangent to each other as shown in 
figure 5 ( c ) .  Any further increase in flow rate causes extinction of the flame or, in 
conventional terms, blowout (Kanury 1977, p. 206). There is no self-sust,aining flame 
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FIGURE 6. -, Calculated and, 0 ,  some measured values of the propane flame stand-off distance 
over the 0.353 mm diameter burner; 0,  u, = U,. Note that there is no solution beyond the critical 
Reynolds number Rebo = 201. 

beyond this critical Reynolds number, which is calculated as Rebo = 201 correspond- 
ing to  xbo x 20 em for a tube with d = 0.353 mm. This critical flow condition 
corresponds to  the equality of ( 8 b ) .  Note from figure 5 ( c )  that the local concentration 
of propane drops below its lean flammability limit at a substantially higher location 
than xb0. 

At much higher flow rates, the uf and u, curves have no intersection, thus no 
solution for (4b) as shown in figure 5 ( c ) .  There will be only one solution at low 
Reynolds numbers. This solution is stable. At very low Reynolds numbers there is 
no solution to  (4 b )  because the flow velocities are lower than those of sustainable 
flames. The flame, however, attaches to the burner tube before these conditions are 
reached and the discussions of this paper are not applicable. 

Figure 6 shows the locus of the solutions of ( 4 4  for propane jet issuing from the 
0.353 mm diameter tube as a function of the jet Reynolds number. The stable and 
the unstable branches meet a t  the critical Reynolds number Rebo, beyond which no 
free-standing flame can be sustained over the jet. The critical Reynolds number is 
taken as the parameter that  determines the blowout condition of the flame. The other 
interesting flow condition is when the flame stabilizes at u, = Urn. This point is also 
marked in the figure. The flame is stabilized on the rich branch of the u,(C) curve 
for lower Reynolds numbers. Under these conditions the flame has considerable soot 
formation. Above this flow condition the flame is stabilized on the lean branch of the 
u,(C) curve and the flame exhibits very low or no observable soot formation. The flame 
is blue. A few measurements of the flame stand-off distance are also shown in 
figure 6. At large stand-off distances the agreement is good. At lower flow rates, 
however, the flame attaches to the burner as indicated in the figure. The flame 
exhibits a substantial hysteresis, that  is, it is either attached or lifted for the same 
Reynolds number depending on the history of the flow. This region is also marked 
in figure 6. 

The dependence on the tube diameter of the blowout parameters xbo and Rebo for 
the propane flame are shown in figure 7. The curves are determined from (13) (or, 
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FIGURE 7. Calculated and measured values of the blowout parameters as a function of the burner 
diameter for propane flame in a round laminar jet discharging from a tube. (a) Stand-off distance 
at blowout zbo. (b) Reynolds number at blowout Rebo. 

equivalently, from (14)) using table 1 for the various parameters and are 

and 

xbo = (1650 mm-') d2,  

Rebo = (577 mm-l) d .  

The propane concentration a t  xbo is from ( 1  1 c) 

Cb, = O.765Cm, (15c) 

which is about 1.30 mole/m3. The corresponding laminar flame speed uf, bo from either 
equation (10) or figure 4 as marked is about 36 cm/s, which is significantly lower than 
the maximum flame speed of 41.7 cm/s. Also shown in figure 7 are the experimentally 
determined values of xbo and Rebo for the tubes with laminar flow. The blowout 
Reynolds number was determined by observing the flame a t  or near the conditions 
of figure 5 (b) where the flame is at the verge of extinction. The flame stand-off distance 
was determined from both photographs and direct observations. That we could 
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FIGURE 8. Visible (left, & s) and schlieren (right, 2.5 ps) pictures of the lifted laminar propane flames 
over the 0.353 mm diameter tube. (a) Just before blowout. ( b )  Near the blowout Reynolds number 
Rebo = 201. (c) Below blowout, Re x 160. 

observe and photograph the flame near blowout necessarily implies that even the 
maxima of the measurements from such observations are lower than the actual flame 
stand-off distances a t  blowout. Therefore, we show in figure 7 ( a )  as the measured data 
the maximum values of the zbo we could observe for various tube burners. The 
corresponding Reynolds numbers are shown in figure 7 (b ) .  The error bars reflect the 
accuracy of the flowmeter specified by the manufacturer. The agreement between the 
predicted and the observed values is remarkably good. The downstream location on 
the jet axis zlean where the local concentration is equal to  the lean flammability limit 
Clean is shown also in figure 7 (a). This curve is calculated from ( 3 b )  at the conditions 
of (15) as zlean = (2670 mm-l) d2 and is substantially higher than the stand-off 
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distance a t  blowout (cf. figure 5 c  and equation ( 1 5 ~ ) ) .  The C ,  and Crich curves are 
shown also for reference in figure 7 (a). 

Figure 8 shows samples of direct and schlieren photographs of lifted laminar 
propane flames over the 0.353 mm diameter tubing near and just before blowout. 
Visible (left, & s exposure) and schlieren (right, vertical knife edge, 2.5 ps exposure) 
pictures taken under comparable conditions are shown side by side in the figure. The 
flame fronts in figure 8(a-c) are about 20, 15, and 10 cm downstream from the exit 
of the tube burner, respectively. If the conventional scaling is used, these flame 
stand-off distances are about 600, 450, and 300 burner diameters. These large 
numbers certainly indicate that the flame is in the asymptotic region of the flow and 
where the details of the burner geometry are no longer relevant. The pictures show 
the upstream portion of the total flame. The visible flames are blue. The whole flame 
field has a faint blue envelope which we did not attempt to capture in these pictures 
as our interest was in the shape of the flame-anchoring region, particularly near 
blowout conditions. At lower flame stand-off distances, the flame front is highly 
curved, as evidenced in both the direct and schlieren pictures (figure 8c).  This curve 
substantially influences the upstream and lateral flow and temperature fields ; 
therefore, the analysis of the flame front presented above is not satisfactory. As the 
flame is further lifted, however, the flame front becomes flatter and the assumptions 
of the analysis of this paper are better satisfied (figure 8a) .  Near blowout the flame 
front becomes flat ; the light intensity diminishes, indicating chemical reactions 
become weak. Thus, the predictions of the blowout of the analysis presented here 
should be in good agreement with observations. At the verge of blowout, the flame 
becomes very sensitive to external disturbances. The disturbance generated by a crisp 
finger snap, for example, is enough to put out the flame from as far away as 4 metres. 

The effects of buoyancy, which were not considered in the theoretical formulation, 
arise through the non-uniform density field due to the variations in the reactant 
concentration and through the high temperature combustion products downstream 
of the flame surface. To check those, we repeated the experiments with various 
orientations of the pure-fuel jet. We could not observe any significant difference in 
the values of the blowout parameters and the shape of the flame near blowout until 
the jet was oriented substantially below the horizontal plane. Only when the jet was 
pointed vertically downward, did the rising hot flame products change the flame 
characteristics markedly. Under such conditions the assumptions of the formulation 
presented in this paper do not apply. 

Figure 9 shows the prediction of (4) for the shape of flame front over the 0.353 mm 
diameter burner at Re = 200. The conditions are comparable to  those of figure 8(a ) .  
Both F+(B) and F-(B) start at R, = 183.6 mm determined from (409, and end on the 
lean flammability limit surface whose shape is calculated from (3e) and (3f) with 
C = C,,,,. F+ surface curves downstream while F- surface curves upstream. Although 
not obvious in the figure, F+ surface has a slightly higher curvature than F- surface. 
The two F surfaces have only one common point with the concentration and axial 
velocity contours passing through R,. The F+(B) surface approximates the outer 
portions of the observed flame shapes in figure 8. The central parts of the flame, 
however, seem to conform to a shape much like the local concentration contour. We 
expect that chemical processes such as fuel pyrolysis and oxidation of soot precursors 
are dominant in determining the visible shape of the flame there. On the outside, 
however, the solution F+(B) seems to be a suitable asymptotic form of the flame front 
in the lean regions of the flame where chemistry ceases to be dominant. 
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FIQURE 9. Calculated shape F+ of lifted laminar propane flame front over 0.353 mm diameter burner 
at Re = 200 (cf. figure 8a). R, = 183.6 mm. Concentration and velocity contours passing through 
(R,,O), C and u,, and the lean flammability limit contour C,,,, are shown also. 

7.3. Hydrogen &me 
Hydrogen was noted to diffuse upstream of the burner in figure 2. Also, table 1 lists 
the parameters needed in calculating its blowout characteristics even though lifted 
laminar hydrogen jet flames have not been observed. We could, however, demonstrate 
the presence of an unstable solution of (4d) in the same manner described for propane 
jet. When the ignition source is moved upstream of that solution, the flame rapidly 
attaches to the burner. The location of the unstable solution is observed to be much 
closer to the jet exit plane than that of the propane jet, which is in conformity with 
predictions (cf. y = 320 mm-' for hydrogen and y = 1650 mm-' for propane, from 
table 1). At relatively low flow rates, the hydrogen flame is also observed to move 
upstream of the exit plane of the jet. The commonly observed axial quenching region 
near the burner is no longer present. The heating from the flame was seen to be intense 
enough to heat the stainless-steel burners to glowing red temperatures ( -  750 "C), 
which confirms the predicted upstream diffusion of hydrogen shown in figure 2. Thus, 
the experiments substantiate the predictions of the analytical formulation even when 
the Schmidt number is varied by a factor of nearly 7 from propane to hydrogen. 

8. Generalization 
Even though figure 7 shows for pure propane fuel jet the dependence of the laminar 

blowout parameters Rebo and zbo on the burner-tubing diameter d ,  a general 
presentation is possible if the data are presented in the dimensionless forms suggested 
by (1 1). In fact, such a presentation must be universal inasmuch as the laminar flame 

I 1  FLM 165 
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FIGURE 10. Laminar blowout parameters zbo and Rebo for pure and diluted propane jet flame M 

functions of the fuel properties and molar fuel flow rate. Solid symbols, pure propane jet; open 
symbols, diluted with air. Triangles, 0.208 mm burner; circles, 0.353 mm burner; squares, 0.453 mm 
burner. Fuel jets were diluted up to 45 yo fuel by volume. (a) Blowout height zbo, data and ( 1  1 a). 
(b) Blowout Reynolds number Rebo, data and (1 1 b). 

n, (104) 

speed ur(C) of fuel gases can be approximated by (10). Further, since the amount of 
fuel in the flow field enters this presentation through the molar fuel flow rate N, if 
the jet fluid is not pure, but diluted with the ambient gases or with gases whose 
presence do not alter significantly the shape of the ur(C) characteristics of the 
fuel-oxidizer combination, the predictions of (1 1) for the blowout of laminar lifted 
flames must remain valid. These arguments can easily be tested. 

The two plots of figure 10 show the results of various experiments in the coordinates 
suggested by (1 1). The dimensionless flame stand-off distance at blowout Umzbo/v, 
and the corresponding Reynolds number Rebo are shown as functions of the two 
dimensionless groups 

1 2Sc+1 U,N,,, n =--- 
8~ 1-/3 v " , ~ '  
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and n2 = $ap(2Xc+ 1)-, 'm Nbo 

VL c m  

respectively. These two dimensionless groups which are derived from the analytic 
solution of the phenomenon, scale the fuel flow rate a t  blowout Nbo with the diffusion 
and combustion properties of the particular fuel-oxidizer combination through the 
Schmidt number Sc; the laminar flame speed properties of Urn, C,, a, and B;  and 
the kinematic viscosity of the ambient fluid v,. Typical numerical values for 
numerous parameters needed for the construction of l7, and n2 are listed in table 1 
for some fuels. 

Data for pure propane are indicated with solid symbols for various diameters of 
burner. The open symbols indicate the data for fuel jets diluted with air in a 
continuous-flow apparatus. Two identical flowmeters were used to measure the 
relative flow rates of the fuel gas and air before they were mixed. The readings from 
these two flowmeters are used to determine the partial fuel density in the jet fluid pp. 
The jets were diluted to as low as 45% fuel by volume. The jet Reynolds number 
Rebo and the molar fuel flow rate Nbo are then determined using (12b) and (12c).  The 
agreement between the measured values and the predictions of (1 1) are good for low 
Reynolds numbers where the jet flow is hydrodynamically stable. A t  higher Reynolds 
numbers, however, the flow-field instabilities, which are extremely sensitive to even 
minute disturbances in the environment, make the zbo measurements rather difficult, 
while the blowout Reynolds number Rebo could be ascertained with relatively less 
difficulty. Given the inherent uncertainties in the values in table 1 and the difficulties 
involved in any kind of stability experiment, the data of figure 10 confirm reasonably 
well the applicability of the arguments presented here. The recent arguments of 
Broadwell et al. (1985) suggest somewhat similar phenomena occur in turbulent 
flames. 

9. Concluding remarks 
The exact solution of the concentration field of a round laminar jet is presented. 

This solution shows the explicit dependence of the concentration field on the Schmidt 
number. The corresponding laminar boundary-layer equations are not adequate for 
the description of fields with low Schmidt numbers. The concentration field and the 
laminar flame speed characteristics of fuel discharging from a small orifice are 
combined into a kinematic argument to calculate the shape of the base of the lifted 
laminar flame. A formal criterion is proposed for the spatial stability of the flame 
front. The condition for the existence of the flame front gives a general criterion for 
the blowout of the lifted laminar flame. With a second-order curve fit to the existing 
flame-speed data, an explicit relationship between various flow and fuel parameters 
is established for the blowout of the lifted laminar flame. This formulation does 
account for the diluted fuel jets also. Simple experiments were performed to verify 
the predictions of flame shape and stability. The observed flame shape and stability 
characteristics of both pure and diluted propane jets were found to be in good 
agreement with the predictions. Thus, the blowout phenomenon can be accounted 
for from the fluid-mechanics arguments alone. 

The ideas developed in this paper are equally applicable to the flame over a laminar 
oxidizer jet discharging into a fuel gas. The flame blowout occurs on the rich 
flammability branch of the particular up(C) curve; therefore, a curve fit analogous to 
(10) to that part of the flame-speed curve is needed to evaluate constants similar to 

11-2 
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a and 8. Although the discussions of this paper are confined to laminar flames, it would 
be an interesting endeavour to explore their extension to lifted turbulent flames and, 
in particular, the applicability of the dimensionless variables similar to l7, and l7, 
to the description of the blowout of turbulent flames. 
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